ThingsBoard is an open-source server-side platform that allows you to monitor and control IoT devices. It is free for both personal and commercial usage and you can deploy it anywhere. If this is your first experience with the platform we recommend to review what-is-thingsboard page and getting-started guide.
This sample application performs collection of temperature and humidity values produced by DHT22 sensor and further visualization on the real-time web dashboard. Collected data is pushed via MQTT to ThingsBoard server for storage and visualization. The purpose of this application is to demonstrate ThingsBoard data collection API and visualization capabilities.
The DHT22 sensor is connected to ESP8266. ESP8266 offers a complete and self-contained Wi-Fi networking solution. ESP8266 push data to ThingsBoard server via MQTT protocol by using PubSubClient library for Arduino. Data is visualized using built-in customizable dashboard. The application that is running on ESP8266 is written using Arduino SDK which is quite simple and easy to understand.
The video below demonstrates the final result of this tutorial.
Once you complete this sample/tutorial, you will see your sensor data on the following dashboard.
You will need to have ThingsBoard server up and running. Use either Live Demo or Installation Guide to install ThingsBoard.
USB to TTL
Resistor (between 4.7K and 10K)
Breadboard
2 female-to-female jumper wires
10 female-to-male jumper wires
3 male-to-male jumper wire
3.3V power source (for example 2 AA batteries)
ESP8266 Pin | USB-TTL Pin |
---|---|
ESP8266 VCC | USB-TTL VCC +3.3V |
ESP8266 CH_PD | USB-TTL VCC +3.3V |
ESP8266 GND (-) | USB-TTL GND |
ESP8266 GPIO 0 | USB-TTL GND |
ESP8266 RX | USB-TTL TX |
ESP8266 TX | USB-TTL RX |
DHT-22 Pin | ESP8266 Pin |
---|---|
DHT-22 Data | ESP8266 GPIO 2 |
DHT-22 Pin | USB-TTL Pin |
---|---|
DHT-22 VCC | USB-TTL VCC +3.3V |
DHT-22 GND (-) | USB-TTL GND |
Finally, place a resistor (between 4.7K and 10K) between pin number 1 and 2 of the DHT sensor.
The following picture summarizes the connections for this project in programming/debug mode:
ESP8266 Pin | 3.3V power source |
---|---|
ESP8266 VCC | VCC+ |
ESP8266 CH_PD | VCC+ |
ESP8266 GND (-) | VCC- |
DHT-22 Pin | ESP8266 Pin |
---|---|
DHT-22 Data | ESP8266 GPIO 2 |
DHT-22 Pin | 3.3V power source |
---|---|
DHT-22 VCC | VCC+ |
DHT-22 GND (-) | VCC- |
The final picture:
Note ThingsBoard configuration steps are necessary only in case of local ThingsBoard installation. If you are using Live Demo instance all entities are pre-configured for your demo account. However, we recommend reviewing this steps because you will still need to get device access token to send requests to ThingsBoard.
This step contains instructions that are necessary to connect your device to ThingsBoard.
Open ThingsBoard Web UI (http://localhost:8080) in browser and login as tenant administrator
Go to “Devices” section. Click “+” button and create a device with the name “ESP8266 Demo Device”.
Once device created, open its details and click “Manage credentials”. Copy auto-generated access token from the “Access token” field. Please save this device token. It will be referred to later as $ACCESS_TOKEN.
Click “Copy Device ID” in device details to copy your device id to the clipboard. Paste your device id to some place, this value will be used in further steps.
Download the dashboard file using this link. Use import/export instructions to import the dashboard to your ThingsBoard instance.
In order to start programming ESP8266 device, you will need Arduino IDE installed and all related software.
Download and install Arduino IDE.
After starting Arduino IDE, open the preferences from the ‘file’ menu.
Paste the following URL to the “Additional board managers URL”: http://arduino.esp8266.com/stable/package_esp8266com_index.json
Close the screen by clicking the OK button.
Now we can add the board ESP8266 using the board manager.
In the menu tools, click on the menu option Board: “Most likely Arduino UNO”. There you will find the first option “Board Manager”.
Type in the search bar the 3 letters ESP. Locate and click on “esp8266 by ESP8266 Community”. Click on install and wait for a minute to download the board.
Note that this tutorial was tested with the “esp8266 by ESP8266 Community” version 2.3.0.
In the menu Tools “Board “Most likely Arduino UNO” three new boards are added.
Select “Generic ESP8266 Module”.
Prepare your hardware according to the Programming/flashing schema. Connect USB-TTL adapter with PC.
In the menu Tools, select the corresponding port of the USB-TTL adapter. Open the serial monitor (by pressing CTRL-Shift-M or from the menu Tools). Set the key emulation to “Both NL & CR” and the speed to 115200 baud. This can be set in the bottom of terminal screen.
Open Arduino IDE and go to Sketch -> Include Library -> Manage Libraries. Find and install the following libraries:
Note that this tutorial was tested with the following versions of the libraries:
Download and open esp8266-dht-mqtt.ino sketch.
Note You need to edit following constants and variables in the sketch:
resources/esp8266-dht-mqtt.ino |
---|
|
Connect USB-TTL adapter to PC and select the corresponding port in Arduino IDE. Compile and Upload your sketch to the device using “Upload” button.
After application will be uploaded and started it will try to connect to ThingsBoard node using mqtt client and upload “temperature” and “humidity” timeseries data once per second.
When you have uploaded the sketch, you may remove all the wires required for uploading including USB-TTL adapter and connect your ESP8266 and DHT sensor directly to the power source according to the Final wiring schema.
In order to perform troubleshooting, you should assemble your hardware according to the Programming/flashing schema. Then connect USB-TTL adapter with PC and select port of the USB-TTL adapter in Arduino IDE. Finally, open “Serial Monitor” in order to view debug information produced by serial output.
Finally, open ThingsBoard Web UI. You can access this dashboard by logging in as a tenant administrator. Use:
in case of local ThingsBoard installation.
Go to “Devices” section and locate “ESP8266 Demo Device”, open device details and switch to “Latest telemetry” tab. If all is configured correctly you should be able to see latest values of “temperature” and “humidity” in the table.
After, open “Dashboards” section then locate and open “ESP8266 DHT22: Temperature & Humidity Demo Dashboard”. As a result, you will see two digital gauges and two time-series charts displaying temperature and humidity level (similar to dashboard image in the introduction).
Browse other samples or explore guides related to main ThingsBoard features:
Don’t hesitate to star ThingsBoard on github to help us spread the word. If you have any questions about this sample - post it on the issues.
Getting started guides - These guides provide quick overview of main ThingsBoard features. Designed to be completed in 15-30 minutes.
Installation guides - Learn how to setup ThingsBoard on various available operating systems.
Connect your device - Learn how to connect devices based on your connectivity technology or solution.
Data visualization - These guides contain instructions how to configure complex ThingsBoard dashboards.
Data processing & actions - Learn how to use ThingsBoard Rule Engine.
IoT Data analytics - Learn how to use rule engine to perform basic analytics tasks.
Advanced features - Learn about advanced ThingsBoard features.
Contribution and Development - Learn about contribution and development in ThingsBoard.